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ABSTRACT

The three-dimensional characterization of magnetic flux-ropes observed in the heliosphere has been

a challenging task for decades. This is mainly due to the limitation to infer the 3D global topology and

the physical properties from the 1D time series from any spacecraft. To advance our understanding

of magnetic flux-ropes whose configuration departs from the typical stiff geometries, here we present

the analytical solution for a 3D flux-rope model with an arbitrary cross-section and a toroidal global

shape. This constitutes the next level of complexity following the elliptic-cylindrical (EC) geometry.

The mathematical framework was established by Nieves-Chinchilla et al., with the EC flux-rope model

that describes the magnetic topology with elliptical cross-section as a first approach to changes in

the cross-section. In the distorted-toroidal flux rope model, the cross-section is described by a general

function. The model is completely described by a non-orthogonal geometry and the Maxwell equations

can be consistently solved to obtain the magnetic field and relevant physical quantities. As a proof of

concept, this model is generalized in terms of the radial dependence of current density components.

The last part of this paper is dedicated to a specific function, F (ϕ) = δ(1 − λ cosϕ), to illustrate

possibilities of the model. This model paves the way to investigate complex distortions of the magnetic

structures in the solar wind. Future investigations will in-depth explore these distortions by analyzing

specific events, the implications in the physical quantities, such as magnetic fluxes, heliciy or energy,

and evaluating the force balance with the ambient solar wind that allows such distortions.

Keywords: magnetic fields – solar wind – Sun: coronal mass ejections (CMEs) – Sun: evolution – Sun:

heliosphere

1. INTRODUCTION

In heliophysics, a flux rope could be defined as a magnetized plasma confined within magnetic field lines wrapping

around an axis that transports mass, magnetic flux, energy and helicity away from the Sun. In an effort to create

an unidealized picture of a flux rope in the heliosphere, it could be described by an internal complex current density

distribution driving a twisted but not necessarily ordered magnetic field topology that maintains the plasma enclosed.

In this description, the global geometry would be determined by the flux rope genesis back at the Sun as well as by

the dynamical balance with the ambient solar wind as the flux rope evolves in the heliosphere.

Little is known about the internal structure and global shape of heliospheric flux ropes, basically because of the

lack of observations that are limited to a few locations in the heliosphere. The progressive increase of space-based

telescopes, such as Parker Solar Probe (PSP, Fox et al. 2016) and Solar Orbiter (Müller et al. 2020) that sum up

to SOHO (Domingo et al. 1995), STEREO (Kaiser et al. 2008), and SDO (Pesnell et al. 2012), are providing a

valuable combination of remote-sensing observations that partially enable to untangle the third dimension from the

ecliptic-based field of view.

On the basis of in-situ observations, the magnetic flux ropes observed in the heliosphere have been assumed for

decades to be a force-free magnetic structure in a simple circular-cylindrical geometry (Lundquist 1951; Burlaga et al.
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1981; Suess 1988; Lepping et al. 1990) but also exploring the magnetohydrostatic force balance (Hidalgo et al. 2002a,b;

Sonnerup & Guo 1996; Hau & Sonnerup 1999; Hu 2017). In an effort to reconcile this view with the remote-sensing

observations, a realistic flux rope may depart from that idealized picture as it propagates through the corona and in

the interplanetary medium. The current understanding of the observed patterns in these observations suggests that

the dark, round void outlined by excess brightness is the flux rope cavity with its axis seen oriented along the line of

sight, while the bright front defines the leading edge associated with part of the sheath in interplanetary in situ data

(e.g. Rouillard 2011; Kilpua et al. 2017).

Definitively, the upcoming out-of-the-ecliptic observations from Solar Orbiter are promising towards unraveling the

global shape of large structures in the inner heliosphere. In parallel to the increase of available observations, the

understanding of the fundamental physics associated with flux ropes also requires models adapted to the complexity

of the space environment. We approach this challenge with the revision of the circular-cylindrical model in Nieves-

Chinchilla et al. (2016, henceforth CC model), which provided complexity in the flux rope magnetic structure by

including the polynomial series in the current density. In a second paper, Nieves-Chinchilla et al. (2018, henceforth EC

model), we developed the mathematical formulation to solve any magnetohydrodynamic equations in a non-orthogonal

coordinate system, and approached the geometrical complexity with an elliptical cross section for the cylinder as an

approximation to a distorted flux rope.

This paper aims to advance in the development of a model that better converges to the above definition of a

heliospheric flux rope, namely that described by an internal complex current density distribution driving a twisted but

not necessarily ordered magnetic field topology. To that aim, we develop a 3D flux rope model based on a toroid but

allowing more complex cross-section geometries. Section 2 includes the mathematical details of a general model and

the physical quantities such as magnetic fluxes, energy, helicity and Lorentz force. In Section 3, we adapt the model

to a specific cross-section and compare with the imaging observations with the cylindrical case. Section 4 includes a

brief discussion and final remarks.

2. GENERAL DISTORTED-TOROIDAL FLUX ROPE MODEL

Following the path of the previous papers and assuming a toroidal-shaped geometry, we introduce a distorted-toroidal

(DT) coordinate system here,

x= [ρ+ rF cosϕ] cosψ

y= [ρ+ rF cosϕ] sinψ (1)

z= r sinϕ

where ρ is the major radius for the torus, ϕ and ψ are the poloidal and toroidal angles, and F = F (ϕ) is a function

that geometrically characterizes the cross-section distortion.

Figure 1 illustrates the global 3D global geometry and a detail of the distorted (green color) and non-distorted (gray

color) cross-sections of a uniform-twist magnetic flux-rope based on this coordinate system. The new coordinates are

indicated in pink color in the graphics. The ψ− and ϕ− angles range from 0− 2π and the r−coordinate ranges from 0

to R. The r-coordinate is not the distance to the center of the flux-rope that will be defined by the rF (ϕ) function and

will shape the cross-section. In the case of Figure 1, we have selected the function F = δ(1− λ cosϕ) with δ= 0.9 and

λ=0.4. In this case, the structure is highly compressed in the outer edge of the torus but it extends beyond the r = R

value at the inner edge of the torus. The amount of front compression or rear extension in this case is determined by

the two parameters, δ and λ. In the more general case, the F function may be generalized to any angular function,

depending on the poloidal angle ϕ and on the number of parameters needed to characterize the cross-section.

Figure 2 illustrates some other possibilities of the DT coordinate system for four F -functions. In the four cases,

the colored cross-sections are shown in contrast with a semitransparent circular cross-section (F = 1). Figures 2a,b

illustrate the previously discussed cases for F = δ and F = δ(1 − λ cosϕ). In this last case, the change in the sign

in the λ parameter will determine the distortion face, outwards for the negative sign, inwards for the positive sign.

The other two examples, Figure 2c and d exemplify other two observed shapes that may remind some white light

observations of CMEs in the heliosphere.

2.1. Model framework
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Figure 1. Representation of a circular-toroidal flux-rope (gray line) and a distorted flux rope with an uniform-twist field. In
pink color the r, ψ, ϕ - components, ρ is the major radius, R minor radius, ψ is the azimuth angle, and ϕ the poloidal angle.
Both structures are represented in the same distorted-toroidal coordinate system with F=1 (gray color) for the circular case
and the distorted case (green color) with F=δ(1− λcosϕ), ρ = 4, δ = 0.9 and λ=0.4.
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Figure 2. Illustration of different cross-sections based on (a) F=δ, elliptical cross-section, (b) F = δ(1 − λcosϕ) with δ = 0.9
and λ=0.4, (c) F = δ(1− λ cos2 ϕ) with δ = 0.5 and λ=0.4, and (d) F = δ(1− λ cosϕ+ 3λ sinϕ/4) with δ = 0.9 and λ=0.4. In
all simulations, ρ = 3R. Each case is displayed on top of the semi-transparent circular cross-section to highlight the distortion.

Since the DT coordinate system is necessarily orthogonal, any physical quantity should be described by a set of the

covariant and contravariant components. Here, we will follow the methodology described in Nieves-Chinchilla et al.

(2018), just providing the critical description for this paper.

The basis vectors will be defined as

~εr = [F cosϕ cosψ, F cosϕ sinψ, sinϕ]

~εψ = [−[ρ+ rF cosϕ] sinψ, [ρ+ rF cosϕ] cosψ, 0] (2)

~εϕ= r[= cosψ,= sinψ, cosϕ]

where

===(ϕ) = F ′ cosϕ− F sinϕ, (3)

F ′=∂ϕF. (4)

These basis vectors are related to the unit vectors by the scale factors,

hr = [F 2 cos2 ϕ+ sin2 ϕ]1/2

hψ = (ρ+ rF cosϕ) (5)

hϕ= r[=2 + cos2 ϕ]1/2 = rh
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where, for analogy with the EC model, the metric tensor element hϕ is renamed as rh.

The metric tensor must be built to relate the covariant (subscript) and contravariant (superscript) spaces. The

elements of the metric tensor are,

grr =~εr · ~εr = [F 2 cos2 ϕ+ sin2 ϕ], (6)

gψψ =~εψ · ~εψ = [ρ+ rF cosϕ]2 = h2ψ, (7)

gϕϕ=~εϕ · ~εϕ = r2[=2 + cos2 ϕ] = r2h2, (8)

grψ = gψr = ~εr · ~εψ = 0, (9)

grϕ= gϕr = ~εr · ~εϕ = r cosϕ[=F + sinϕ] = rgrϕ, (10)

gψϕ= gψϕ = ~εψ · ~εϕ = 0. (11)

Note we have renamed grϕ = rgrϕ to separate the radial and the angular dependency.

The metric is then,

g1/2 = [grrgψψgϕϕ − g2rϕgψψ]1/2 = r(ρ+ rF cosϕ)[F cos2 ϕ−= sinϕ] = rhψg. (12)

Note also that for the cylindrical approximation the hψ = 1 and the g = δ (EC model) or 1 (CC model).

The covariant components of the metric are:

grr =
gψψgϕϕ

g
=
h2

g
(13)

gψψ =
grrgϕϕ − g2rϕ

g
=

1

hψ
(14)

gϕϕ=
grrgψψ
g

=
h

r2g
(15)

grϕ= gϕr = −grϕgψψ
g

= −
grϕ
rg

(16)

The final step is to define operators that allow us to solve the MHD equations and obtain the physical quantities

that characterize heliospheric flux ropes (see NC18 for more details). The divergence of the magnetic field is given by

5 · ~B =
1

g1/2
∂

∂qk
(g1/2Bkc ) (17)

where Bkc are the non-scaled contravariant components of the magnetic field, and qk= (r, ψ, ϕ). Same equation is used

for the current density (5 · −→j = 0).

The curl components for the magnetic field are given by

(5× ~B)i =
1

g1/2
εijk

∂

∂qj
(gklB

l
c) (18)

where εijik are the Levi-Civita Coefficients.

Assuming (0, Byc ,Bϕc ) and (jrc ,jyc ,jϕc ) vector components of the magnetic field and current density, the equations

to solve are obtained from Ampere’s Law, and Gauss’s law for magnetism for a stationary case and imposing the

continuity equation for the currents. Based on the geometry, Brc = 0 can be assumed and the equation system will

be:

∂ϕ(g1/2Bϕc ) = 0, (19)

∂ϕ(gψψB
ψ
c ) =−g1/2µ0j

r
c , (20)

∂ϕ(grϕB
ϕ
c )− ∂r(gϕϕBϕc ) = g1/2µ0j

ψ
c , (21)

∂r(gψψB
ψ
c ) = g1/2µ0j

ϕ
c , (22)

∂r(g
1/2jrc ) + ∂ϕ(g1/2jϕc ) = 0. (23)
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where the magnetic field and current density components are the non-scaled contravariant coefficients of ~εi and they

should be scaled using the scale factors, equations (5).

Then, directly from equation (19), the solution for the poloidal magnetic field component must be,

Bϕc (r, ϕ) =
B
ϕ

c (r)

hψg
(24)

where henceforth B
ϕ

c = B
ϕ

c (r).

Now solving for Bϕc , the equation (21),

∂r(B
ϕ

c ) +

[
1

r
χ(ϕ)− F cosϕ

hψ
σ(ϕ)

]
B
ϕ

c =−µ0

h2ψg
2

rh2
jψc , (25)

with,

χ(ϕ) = 2−
∂ϕgrϕ
h2

+
grϕ∂ϕg

gh2
(26)

σ(ϕ) = 1 +
grϕ
h2

=
F cosϕ

. (27)

The solution to the equation is,

B
ϕ

c = −µ0

hσψ
rχ

g2

h2

∫ r

0

rχ−1

hσ−2ψ

jψc (r, ϕ)dr′, (28)

where jψc (r, ϕ) should be such to ensure that B
ϕ

c (r) does not depend on the poloidal coordinate. Thus,

jψc (r, ϕ) =
h2

g2
hσ−2ψ

rχ−1
∂r
[ rχ
hσψ
k(r)

]
=

h2

g2h2ψ

[
k(r)(χ− r

hψ
σ) + k′(r)r

]
, (29)

where k(r) is an arbitrary function solely dependent on r. The non-scaled poloidal magnetic field component is,

Bϕc =
B
ϕ

c

hψg
= −µ0

k(r)

hψg
(30)

Now solving, from equation (23), the poloidal current density component,

jϕc =
∂r(rf(r))

rg
, (31)

and the radial current density component is,

jrc = − =
hψg

f(r) (32)

Note that, in the particular case of F (ϕ) = constant and cylindrical geometry, jr = 0 would be a solution of the

equations. This was the solution expressed in the case of the EC and CC models.

Now, to solve for the toroidal magnetic field component, we can impose Bψc (r, ϕ) =
B
ψ
c (r)
hψ

, then the scaled toroidal

magnetic field component,

B
ψ

c (r) = −µ0f(r)

∣∣∣∣r
0

, (33)

where we will impose that the value of the central magnetic field will decrease with the radial distance to reach a

value at r = R that may be canceled or a scaled value of the central magnetic field. This boundary condition may be

arbitrary set. We will rename this function as

fr(r) = f(r)
∣∣r
0
. (34)

Then, the non-scaled toroidal magnetic field component is,

Bψc = −µ0
1

hψ
fr(r)

∣∣r
0
. (35)
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GEOMETRICAL FACTORS

& PARAMETRIC FUNCT.

1. =(ϕ) = F ′(ϕ) cosϕ− F (ϕ) sinϕ

2. hr = [F 2 cos2 ϕ+ sin2 ϕ]1/2

3. h = [=2(ϕ) + cos2 ϕ]1/2

4. hψ = (ρ+ rFcosϕ)

5. g = [F cos2 ϕ−= sinϕ]

6. grϕ = cosϕ[=F + sinϕ]

Table 1. Geometrical factors, including scale factors and metric, and parameterized equations needed to build the model
equations.

The scaled magnetic field components are,

Br(r, ϕ) = 0

Bψ(r, ϕ) =hψB
ψ
c (r, ϕ) = −µ0

[
f(r)

∣∣r
0

]
(36)

Bϕ(r, ϕ) = rhBϕc (r, ϕ) = −µ0
h

hψg
rk(r).

The scaled current density components are,

jr(r, ϕ) =−hrjrc (r, ϕ) =
hr=
ghψ

f(r)

jψ(r, ϕ) =hψj
ψ
c (r, ϕ) =

h2

g2hψ

[
k(r)(χ− r

hψ
σ) + k′(r)r

]
, (37)

jϕ(r, ϕ) = rhjϕc (r, ϕ) = h
∂r(rf(r))

g
.

The set of equations (37) and (38) are the general solution of the magnetic field for the radial profile of the current

density components. Table 1 summarizes the geometrical factors and parameterized equations that directly impact in

the above model equations. Thus, for any geometry consistent with the coordinate system, Equation (1), and a chosen

radial profile of the current density component, the solution can be found.

Similar to previous papers, the relevant physical quantities to study these structures in Heliophysics can be obtained

from the previous equations. Below we list some of them, such as the magnetic fluxes,

Φψ =

∫
Bψc dAψ =

∫
Bψc g

1/2drdϕ = µ0

∫ ϕ

0

gdϕ

∫ R

0

rf(r)

∣∣∣∣r
0

dr (38)

Φϕ=

∫
Bϕc dAϕ =

∫
Bϕc g

1/2drdψ = 2πµ0

∫ R

0

rk(r)dr. (39)

Obviously, the toroidal magnetic field will depend on the cross-section geometry, while the poloidal magnetic flux is

not altered.

The magnetic energy,

W =

∫
B2

2µ0
dV =

∫
B2

2µ0
g1/2drdψdϕ (40)

For completeness we include the magnetic helicity, calculated from the dot product with the magnetic potential (see

Woltjer 1958; Taylor 1974; Brown et al. 1999; Arfken & Weber 2005),

H =

∫
~B · ~A dV =

∫
g1/2gikB

i
cA

k
c drdψdϕ (41)

The vector potential also requires an additional calculation that will depend on the distortion and may also require

numerical solutions.
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Finally, the non-scaled covariant cross-product that will lead to the components of the Lorentz force are,

(~j × ~B)|i,c = g1/2εijkj
j
cB

k
c . (42)

Expanding the equation, now there are toroidal and poloidal components in the internal Lorentz forces due to the

distortion and curvature:

(~j × ~B)|c,r = rhψg(jψc B
ϕ
c − jϕc Bψc ) (43)

(~j × ~B)|c,ψ =−rhψg(jrcB
ϕ
c ) (44)

(~j × ~B)|c,ϕ= rhψg(jrcB
ψ
c ) (45)

This model establishes the mathematical formulation to explore distortions in the observed 3D flux ropes, but the

solution of the above equations system would change depending on the kind of distortion of the flux-rope under study

as well as the internal distribution of the current densities. Following the approach in Nieves-Chinchilla et al. (2016);

Nieves-Chinchilla et al. (2018), in the next subsection, we evaluate the solutions to the equations based on the general

radial variation of the current densities with the specific specific geometry based on the F = δ(1−λ cosϕ) for a highly

curved and cylindrical flux rope.

2.2. A general case of radial variation of the current density components

In agreement with previous papers, the current density components could be selected using the radial polynomial

function with arbitrary coefficients. Here, we are going to simplify the problem and select one series term to develop

the problem. Thus,

k(r) =βmr
m, with m ≥ 0, (46)

f(r) =−αnrn+1, with n ≥ 1, (47)

where αn and βm are the two coefficients parameters of the model, and the m,n indexes determine the radial profile

of the current density components and eventually the magnetic field.

The scaled current density components are,

jr(r, ϕ) =hr
=
hψg

αnr
n+1,

jψ(r, ϕ) =
h2hψ

g2
βmr

m[χ+m− r

hψ
σ], (48)

jϕ(r, ϕ) =−h
g

(n+ 1)αnr
n.

The scaled magnetic field components are,

Br(r, ϕ) = 0

Bψ(r, ϕ) =µ0αn[τRn+1 − rn+1] (49)

Bϕ(r, ϕ) =− h

hψg
βmr

m+1.

The above equations could be simplified to one single term of the polynomial series and parameterized to the

parameters, Cnm = αn
βm
Rn−m and Bn = µ0

αn
Rn+1 . Thus, the magnetic field components,

Bψ(r, ϕ) =Bn[τ − rn+1] (50)

Bϕ(r, ϕ) =− h

hψg

Bn
Cnm

rm+1,

and, the current density components are,

jr =
hr
hψ

=
F
αnR

nrn+1,

jψ =
h2hψ
g

αn
Cnm

Rnrm[χ+m− r R
hψ
σ], (51)

jϕ=− h

hψg
αnR

nrn[F cosϕRr + (n+ 1)hψ],
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CIRCULAR ELLIPTIC DISTORTED

F= 1 F=δ F=δ(1− λ cosϕ)

= = − sinϕ = = −δ sinϕ = = δ sinϕ[2λ cosϕ− 1]

hr = 1 hr = [sin2 ϕ+ δ2 cos2 ϕ]1/2 hr = [sin2 ϕ+ F 2 cos2 ϕ]1/2

hψ = (ρ+ r cosϕ) hψ = (ρ+ rδ cosϕ) hψ = (ρ+ rF cosϕ)

h = 1 h = [δ2 sin2 ϕ+ cos2 ϕ]1/2 h = [F 2 sin2 ϕ+ cos2 ϕ]1/2

g = 1 g = δ g = F − δλ sin2 ϕ cosϕ

Br = 0 Br = 0 Br = 0

Bψ = Bn[τ − rn+1] Bψ = Bn[τ − rn+1] Bψ = Bn[τ − rn+1]

Bϕ = − 1
hψ

Bn
Cnm

rm+1 Bϕ = − h
δhψ

Bn
Cnm

rm+1 Bϕ = − h
ghψ

Bn
Cnm

rm+1

Table 2. Functions, scale factors, parametric functions and model equations associated to the geometry associated to F = 1,
F = δ, and F = δ(1± λ cosϕ).

where r = r/R.

Table 2 includes the analytical solution for the magnetic field and current density components for the circular,

elliptical and the distorted (F = δ(1± λ cosϕ)) case. The table also includes all geometrical factors and solutions for

the parameterized equations listed in Table 1. The same exercise can be done for the distortions shown in Figure 2.

Thus, the plot array in Figure 3 shows the total magnetic field distribution (first column), poloidal (second column)

and axial (third column) magnetic field components distribution for the different four distorted cross-sections in the

same order of Figure 2. Figure 2(a) displays the case of F=δ; (b) F = δ(1 − λcosϕ), (c) F = δ(1 − λ cos2 ϕ), and

(d) δ(1 − λ cosϕ + 3λ sinϕ/4). Each case is displayed on top of the corresponding quantity for the semitransparent

circular cross-section distribution to highlight the change due to the distortion. In the simulation, all cases we have

considered use ρ = 3R, λ = 0.4 and δ = 0.5 excepting of Figure 2II that considers δ = 0.9.

For the magnetic field strength, in all cases the contour lines indicate the maximum magnetic field strength that

remains at the ρ distance to the torus center. The torus center is located at the left of each plot, thus due to the

curvature it is observed an increase in the magnetic field strength for all cases. In the symmetric cases, (a) and (c)

is more significant. In the case of a spacecraft crossing the structure, the magnetic field configuration would display

an asymmetric magnetic field magnitude profile with an increase at the rear part of the structure. This scenario

discussed in Nieves-Chinchilla et al. (2018), Figure 11, would describe up to 22% of the ICMEs observed by the Wind

spacecraft in the studied interval. The specific case of the event observed in November 6, 2000 (doy 311), Figure 6c

in the paper, depicts a back compression in the magnetic field strength in spite of the structure showing an expansion

velocity Vexp =58 km s−1. In the case of the asymmetric cross-section distortions, cases (b) and (c) in the Figure 3,

there is a bilateral compression. Same effect due to the curvature plus the front compression due to the distortion.

The magnetic field profile may result in a symmetric magnetic field strength and it would be difficult to decipher

signatures of distortion.

For the magnetic field components, there is an increase in the magnetic field strength due to the axis curvature. Just

for the asymmetric cross-section distortions, there is an increase in the poloidal and axial magnetic field at the front

and rear parts of the structure. The next section will show more insights for the specific case of F = δ(1± λ cosϕ) in

the highly curved and cylindrical flux rope structure.

3. MAGNETIC FIELD IMPRINTS OF THE CURVED-DISTORTED FLUX-ROPE

As part of this paper, we have carried out the study of the implications of the distortion in the magnetic field

configuration as observed by spacecraft crossing a flux-rope. The goal is to identify what in situ signatures could

provide insights of distortion and curvature. We think that it will be premature and artificial to fit the model to

the data since we could increase the number of parameters to improve the goodness parameters. However, we think

htat the first apporach would be to learn from the model to identify signatures of distortion. This exercise would



10 Nieves-Chinchilla, Hidalgo and Cremades

Figure 3. Each column in this array of plots shows the magnetic field magnitude distribution (first column), and poloidal
(second column) and axial (third column) components for the four F−functions displayed in Figure 2. From the top (I) F=δ
with δ = 0.5 and ρ = 1.5R; (II) F = δ(1−λcosϕ) with δ = 0.9, λ=0.4 and ρ = 2R; (III) F = δ(1−λ cos2 ϕ) with δ = 0.5, λ=0.4
and ρ = 2R; and (IV) δ(1− λ cosϕ+ 3λ sinϕ/4) with δ = 0.9 and λ=0.4. In all simulations, ρ = 3R. Each case is displayed on
top of the corresponding quantity for the semitransparent circular cross-section distribution to highlight the change due to the
distortion. The torus center is located at the left of each plot.
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be similar but opposite to the study carried out for Nieves-Chinchilla et al. (2018) that looked for signatures in the

ICMEs observed by Wind for 20 years to identify the distortion, expansion or curvature signatures. In our case, we

will simulate the trajectory of a spacecraft to train our brain and learn how to identify signatures of distortion or

curvature in the real data. This would be the preliminary exercise to eventually train a machine.

Following in the section, we will first define the trajectory of the spacecraft taking into consideration the geometry

of the distortion, so as to generate synthetic magnetic field profiles. Then, we will discuss the implications of the

curvature and distortion in the in-situ observations of the magnetic field as observed by a satellite. For the experiment

we will use one of the functions we discussed in the previous section F = δ(1 − λ cosϕ). We will cross two different

curvatures and we will map the magnetic field magnitude and components to evaluate the deviations from the expected

in-situ signatures that a magnetometer would record if crossing a cylinder with circular crossection geometry. We then

will look for such signatures in the real data. This exercise will pave the way to develop a more sophisticate model to

identify such signatures.

3.1. Spacecraft trajectory

This section is dedicated to evaluate the effect of the distortion in the 3D reconstructions based on in-situ data. The

trajectory of the spacecraft is defined by the location of the spacecraft at the entrance of the flux rope as indicated by

Nieves-Chinchilla et al. (2018),

x0 =
vsw(tt − t0)

2
− F1

F2
z0, (52)

In the case of simulated spacecraft trajectory, the transit time will be,

ts =
2F

vsw

√
R2F2 − y20F 2

3

F2
, (53)

where,

F1 = (F 2 − 1) cosφ cos θ sin ξ cos ξ + a sinφ sin θ cos θ

F2 = b cos2 φ+ a sin2 φ sin2 θ + 2(F 2 − 1) cosφ sinφ sin θ sin ξ cos ξ,

F3 =

√
1− sin2 φ cos2 θ

and,

a = [F 2 cos2 ξ + sin2 ξ]

b = [F 2 sin2 ξ + cos2 ξ]. (54)

Note that we have corrected here an error in equation (51) in Nieves-Chinchilla et al. (2018). Note that in the case

of a reconstruction the spacecraft transit time, ts, and the bulk speed, vsw, are obtained from the observations and

the flux-rope radius, R, is obtained as a deduced output parameter. In the case of synthetic data, the R and vsw are

input parameters, and ts is the output parameter.

3.2. Implications in magnetic field imprints at a spacecraft crossing a distorted flux rope with different curvatures

and impact parameter

In this section, we would like to understand the implications to analyze the resultant magnetic field configuration

when the structure is crossed by a spacecraft with the flux rope having? different curvature of the axis. For this

first experiment, we have selected the m,n-pair [0,1] and F = δ(1 − λ cosϕ) to describe the cross-section geometry.

The magnetic field model equations are,

Bψ(r, ϕ) =B1[τ − r2],

Bϕ(r, ϕ) =− h

hψg

B1

C10
r. (55)

with,

== δ sinϕ[1 + 2λ cosϕ],
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Figure 4. 3D view of the toroidal flux-rope based on the geometry F = δ(1 − λcosϕ) for (a) ρ = 1.5R, and (b)ρ = 2.5R.
In both cases, δ = 0.8, λ = 0.4. The red line indicates the trajectory of a simulated spacecraft. The blue dots indicate the
spacecraft entrance location?.

h= [δ(1− λ cosϕ]2 sin2 ϕ+ cos2 ϕ]1/2,

hψ = (ρ+ rδ(1− λ cosϕ) cosϕ), (56)

g= δ(1− λ cosϕ),

from table 2. The B1, C10, and τ are model parameters and r is the normalized cross-section radial distance.

We have considered two toroidal geometries to compare with the cylindrical case. Figure 4 illustrates the flux ropes

with a central radius of ρ = 2.5R (Figure 4a) and ρ = 1.5R (Figure 4b) respectively, with R being the major radius of

the cross-section. The tori have been partially colored at the front, simulating the front of a CME and indicating the

trajectory of the spacecraft in red color with the spacecraft in blue color. The simulated spacecraft is crossing through

the compressed front of the flux rope and is crossing through its center (y0 = 0). The parameters for the simulation

are: δ =0.8, λ =0.4, τ =1.5, C10=-1.5 (left-handed).

Thus, to evaluate the effect of the distortion as well as the curvature in the in-situ observations of the spacecraft

crossing the structure, we have rotated the magnetic field components from the local coordinate system to, in this

case, the RTN coordinate system. Figure 5 depicts an array of plots for the two scenarios of Figure 4 plus the

case of the CC geometry that will serve as reference scenario to compare with. The figure shows the cross-section

distribution of the magnetic field strength and RTN components for three different geometries: first column, neither

distortion nor curvature (Figure 5(a)-(d), circular-cylindrical); second column, cross-section distorted but not curved,

(Figure 5(e)-(f), F = δ(1 − λ cosϕ) with ρ = 2.5R); and, the third column, same cross-section distortion and highly

curved (Figure 5(i)-(l), F = δ(1 − λ cosϕ) with ρ = 1.5R. For each geometry, we have simulated the crossing of a

spacecraft from the left side through the center, as illustrated in Figure 4, and over plotted with colored line (black or

red) the expected configuration of the magnetic field strength or components, depending on the case. From the top

it is shown the magnetic field strength, R-component, T-component and N-component at the bottom. To evaluate
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Figure 5. Contour plots the magnetic field strength (top row) and RTN coordinates (bottom three rows) distributed on
the flux rope cross section in the cases of: (a-d) circular-cylindrical cross section; (e-h) distorted cross section with geometry
F = δ(1 − λ cosϕ) with large ρ = 2.5R; and, (i-l) same geometrical distortion with ρ = 1.5R to enhance the effect of the
curvature. Overplot in each contour plot is shown the magnetic configuration observed by a spacecraft crossing through the flux
rope center (colored black or red line) and at 50% radial distance of the center, y0=0.5R (colored black or red dashed line).
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the effect of the spacecraft impact distance with respect to the center on the quantities, we have also simulated the

crossing of a spacecraft at y0 = 0.5R, which 50% away from the center (colored dashed line).

Comparing the magnetic field strength (top row Figure 5(a),(e), and (f)), we can observe that the distortion implies

an increase of the asymmetry in the contour plot with a compression of the magnetic field at the front of the structure.

The curvature also implies an increase of the magnetic field strength. This assessment is confirmed if we analyze

the magnetic field configuration as observed by the simulated spacecraft magnetometer, red lines over plotted on the

contour black plots. While in the circular-cylindrical case the magnetic configuration is symmetric, in the distorted

cases the maximum is displaced toward the front of the flux-rope. In the case of the highly curved flux rope, there

is a marked increase in the strength as the spacecraft is leaving the structure, back side Figure 5(i). Note that as we

increase the distance of the spacecraft to the center, the maximum of the strength decreases as expected, but it is

important to highlight that also the effect of the curvature is less relevant.

Given the relative orientation of the flux rope axis to the spacecraft trajectory, the BT component has a very similar

profile to the magnetic strength, Figure 5(c), (g), and (k). Due to the distortion, there is a displacement of the

maximum toward the distorted area, as it is also observed in the magnetic field configuration (black lines). However,

this component does not display any feature associated with the curvature.

The case of the BR component is very particular. This component is the one that provides information about the

spacecraft impact distance to the center. In general, as described largely in the literature (see for instance, Démoulin

et al. 2013; Nieves-Chinchilla et al. 2018), this component is completely flat or curved with maximum in the center,

depending on the orientation when the circular axial symmetry is assumed. The contour plot in Figure5(b) illustrates

this case with constant surfaces perpendicular to cross section. Thus in this case, for the two spacecraft crossings

simulated, we find the constant values for the spacecraft impact at the center, with BR = 0nT and BR = constant

in the case of y0 = 0.5R. The chirality determines the sign, so in our left-handed flux rope, the bottom half provides

positive BR values. In the case of crossing through the top half, the BR values would be negative. As we add distortion,

Figure5(f), or curvature, Figure5(j), the contours indicate a sudden change shortly after the compressed front of the

cross-section. This effect is illustrated with the crossing at y0 = 0.5R (black dashed line). In the case of distortion only,

Figure5(f), BR remains almost constant right after the front compression. However, in the case of adding curvature,

Figure5(j), it implies that in addition to the sudden change close to the compressed area, there is also an increase (in

magnitude) at the back of the structure (black dashed line). Interestingly, both effects of curvature or distortion, go

unnoticed in the case of the spacecraft crossing through the center (black solid line) and are more noticeable as the

spacecraft impact distance increases (black dash line).

The BN component changes the polarity from north to south, Figure 5(d), (h), and (l). For the CC geometry, the

change on the polarity occurs in the center of the cross-section but the distortion implies a displacement towards the

front of the cross-section. Thus, for this specific case, the duration of the positive polarity of the BN component is

almost half of the negative polarity. The effect of the curvature implies a rapid change as the spacecraft approaches

the curved area. For the flux-rope orientation, the BN component is the one that mostly contributes to the increase

in the back side of the magnetic field strength. In this case, the increase of the impact distance (red dashed lines) to

the center implies again a mitigation of the sudden change in the polarity that it is observed with the distortion and

curvature.

4. BRIEF DISCUSSION ABOUT THE IN SITU AND REMOTE-SENSING OBSERVATIONS OF DISTORTED

STRUCTURES AND THE IMPLICATIONS ON SPACE WEATHER FORECASTING

Figure 6 displays two ICMEs observed by the Wind spacecraft (see ICME Wind list, wind.gsfc.nasa.gov Nieves-

Chinchilla et al. 2018). These are two examples, where magnetic field signatures associated with distortions can be

seen in in situ observations. At the top, the very well-known Bastille Day event observed on July 15, 2000, and, at the

bottom, the event observed on September 30, 2012. The plots display the magnetic field magnitude at the top and

the magnetic field components in RTN coordinate system at the bottom. The two vertical dashed lines indicate the

magnetic obstacle boundaries. Based on the boundaries selected, both events display signatures associated with a flux

rope, i.e. rotation of the magnetic field direction, a coherent magnetic structure and, not shown here, but associated

with plasma signatures. In both cases, there is a clear compression in the magnetic field strength at the front of the

structure. In the case of the Bastille day event, the BR-component displays a clear change in the profile. The first part

is curved to negative values and the second half rapidly reaches the zero flat value as could be described by Figure 5(f),

in what would be a spacecraft crossing above but close to the flux-rope axis in a structure highly compressed at the
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front. Both events display asymmetric profiles similar to the magnitude in the BT -component, which indicates that

the structure axis is perpendicular to the spacecraft trajectory. Finally, the BN -component, in both cases, crosses

the polarity from south to north very close to the front, while the positive polarity phase of the BN -component lasts

almost twice in the case of the Bastille Day and almost three more times in the case of September 30, 2012 event.

Figure 6(c) displays the simulated observations of a spacecraft crossing from the front, with perpendicular axis, to

a distorted cross-section based on the function F = δ(1 − λ cosϕ). The parameters selected are ρ = 2.5R, τ = 1.2,

chirality = -1, C10 = 1.5, λ = 0.5, and δ = 0.5. Although the magnetic field components are magnitude are not

identical to the real events, the visual comparative analysis exemplify the how this model may aid in the interpretation

of actual observations exhibiting distortions. This exercise, based on visual inspection, accompanied by exploration of

the physical problem using machine learning techniques (see for instance, dos Santos et al. 2020; Narock et al. 2022)

will allow to make more accurate 3D reconstructions of the flux rope morphology, geometry, and physical parameters

based on in situ observations.

Distortions are not only evident in in situ observations, but also they can be distinguished remotely in white light

imagery. This is the case of the CME on July 7, 2008 seen in the top left panel of Figure 7 while crossing the field

of view of the STEREO/SECCHI COR2-A coronagraph. Its main axis of symmetry is approximately aligned with

STEREO-A’s line of sight, so that the cross-section of the magnetic flux rope can be discerned in the image as circular

threads outlining the dark circular cavity (indicated by the green dashed circle). The other panels of Figure 7 show

the same CME as it evolves in the interplanetary medium, within the field of view of the STEREO/SECCHI HI1-A

telescope. At these distances, the dark circular cavity is distorted into a heart-shaped form (light blue dots) that

flattens with distance. This case would be comparable to the one illustrated in Figure 2d, but considerably flattened.

Figure 8 illustrates the impact of the distortion in one of the critical elements for a reliable Space Weather capability,

the arrival time. At the top, Figure 8(a) displays in black and white a circular cross-section and a colored distorted

cross-section based on the function F = δ(1 − λ cosϕ). This overlay image could represent a case of a distorted

structure fitted by the conventional Gradual Cylindrical Shell (GCS) forward-modeling technique (Thernisien et al.

2006, 2009), which is only capable of simulating structures with circular cross-sections. This could be one of the options

in the attempt to fit the GCS technique in the actual observations, very similar to the illustration in the Figure 7.

The Figure 8(a) includes a three spacecraft crossing with trajectories from the left through the center (black line), half

way to the edge (red line) and very close to the edge (light blue line). Figure 8(b) includes a comparative analysis

of the simulated in situ magnetic field observations of a spacecraft crossing a circular (dashed line) and a distorted

structure (solid line). This exercise illustrates the probably cause of the off in the prediction of the CME arrival

time. By assuming that the GCS fits the if we would like to make a prediction of the arrival time on the basis of the

non-distorted model, the error will be, at least 1/3 of the crossing duration. The peak or maximum in the magnetic

field will remain in the same location since the compression does not displace the flux rope center and the duration

will be very similar. The location of the sign change crossing in the BN polarity won’t change but the duration with

negative polarity will be, at least, half shorter than expected, and the BN positive polarity duration will be larger

than predicted.

Physical parameters, such as the magnetic fluxes, are also relevant for space weather studies. In the case of the

poloidal flux, the impact of the distortion on this parameter would depend on the accurate of the fitting either based on

remote-sensing or in situ observations. Thus, based on the Equation (39), the poloidal magnetic flux is not impacted

by the distortion if the estimation of the radial size (R) of the structure is right. In the case of the toroidal magnetic

flux, the deviation from the actual value will depend on the integral,∫ 2π

0

gdϕ. (57)

This factor will change the expected 2π value for the CC case in general in the case of the axial or toroidal magnetic

flux. For instance, in the elliptical case, Figure 2(a), the result of the integral will reduce the toroidal magnetic flux in

a δ value of the expected or assumed CC case. This will be also the effect in the case-example that we have developed

in this paper with F (ϕ) = δ(1 − λ cosϕ). However, in this last case, there will be an effect in the calculation of the

accumulative magnetic flux at the compressed area that may drive to interpret the distortion as erosion effects (see

for instance, Dasso et al. 2006; Pal et al. 2021).

5. SUMMARY AND FINAL REMARKS
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Figure 6. Interplanetary coronal mass ejections observed by the Wind spacecraft and simulated data. a) The Bastille Day
event observed on July 15, 2000;, and, b) Event observed on September 30, 2012. The plots display the magnetic field magnitude
and components in the RTN coordinate system. c) Simulated magnetic field observations of a spacecraft crossing a distorted
flux rope. The selected function can be found at the top of the plot and the parameters values are ρ = 2.5R, τ = 1.2, chirality
= -1, C10 = 1.5, λ = 0.5, and δ = 0.5. The two vertical dashed lines indicate the magnetic obstacle boundaries.
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STEREO Ahead COR2

2008 - 07 - 07 18:37:30
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Figure 7. Flux rope CME event and its evolution in the interplanetary medium. Top left panel: the CME on 7 July 2008 in the
field of view of the COR2-A coronagraph, with the circular flux rope structure outlined by the green dotted circle. Remaining
panels: The same CME on 8 July 2008, seen evolving with time in the field of view of the HI1-A instrument. The light blue
dots outline the distorted cavity as it flattens with time, in comparison with a circular cross-section.

This paper presents an improvement to the circular-cilindrical (CC) and elliptic-cylindrical (EC) models (Nieves-

Chinchilla et al. 2016; Nieves-Chinchilla et al. 2018). Based on the mathematical formulation developed for the EC

model, we have moved forward to more complex and perhaps more realistic distortions of heliospheric flux ropes. Here

we have presented the model based on a toroidal geometry and expanded to a general cross-section distortion. We have

illustrated the model with four functions, the morphology and internal magnetic field distribution in the Section 2. As

a proof of concept, in the Section 3.2, we have developed the model to a particular cross section based on the geometry

F = δ(1− λ cosϕ).

We have now incorporated a whole section (Section 3.2) to understand the in situ implications of the distortion on

the heliospheric flux ropes. We have simulated two crossing of a spacecraft through a flux rope (center and halfway

to the outer boundary) with two different curvatures and compared with a regular CC geometry. We have mapped

(contour plot) the magnetic field magnitude and the three RTN magnetic components for the three cross-sections and

discussed the changes in the profiles of the magnitude and components that the magnetometer would record in the

two crossings and compared with the CC for two different global curvatures.

The exercise carried out in section 3.2 provides the opportunity to train our ‘brain’ and look for examples in the

real observations. In Section 4 we have included two real events from the Wind ICME catalog (Nieves-Chinchilla et al.

2018) with magnetic configurations that depart from the expected CC geometry.

In this paper, we argue that by doing the fitting of any of the events included in this paper and by increasing

the number of parameters, we may find a good fitting but we won’t be able to ensure that they are the right ones.

This is an exercise carried out for many years, not only by the authors of this paper but also by many others. The

reconciliation with the multiple observations, including imaging, and new numerical techniques is far to be successful

(see for instance, Al-Haddad et al. 2013; Wood et al. 2017). This is why we think that, in order to develop a robust 3D

physic-driven modeling and reconstruction technique, the in situ fitting procedure by itself is not enough to reproduce

the physical and morphological characteristics of the flux ropes. The inclusion of the imaging observations in the

reconstructions techniques, accompanying by a brain- and machine- training techniques, and eventually the evaluation

of dynamics associated to the distortion and deformation (Kay & Nieves-Chinchilla 2021a,b), are the elements to

take into account before confirming this or any other other model is the right one to describe the flux ropes in the

heliosphere
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Figure 8. (a) Circular cross-section flux rope (black and white) and overplotted a distorted cross-sections (colored) based on
the F = δ(1 − λ cosϕ) geometry. The three colored (black, red, light blue) lines indicate a spacecraft trajectory crossing from
the left. (b) Simulation of the expected in situ observations from a spacecraft crossing a distorted and a non-distorted flux-rope
at different distance from the center.
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